Trace Ratio Criterion Based Large Margin Subspace Learning for Feature Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Margin Subspace Learning for feature selection

Recent research has shown the benefits of large margin framework for feature selection. In this paper, we propose a novel feature selection algorithm, termed as Large Margin Subspace Learning (LMSL), which seeks a projection matrix to maximize the margin of a given sample, defined as the distance between the nearest missing (the nearest neighbor with the different label) and the nearest hit (th...

متن کامل

Trace Ratio Criterion for Feature Selection

Fisher score and Laplacian score are two popular feature selection algorithms, both of which belong to the general graph-based feature selection framework. In this framework, a feature subset is selected based on the corresponding score (subset-level score), which is calculated in a trace ratio form. Since the number of all possible feature subsets is very huge, it is often prohibitively expens...

متن کامل

Large-margin feature selection for monotonic classification

Monotonic classification plays an important role in the field of decision analysis, where decision values are ordered and the samples with better feature values should not be classified into a worse class. The monotonic classification tasks seem conceptually simple, but difficult to utilize and explain the order structure in practice. In this work, we discuss the issue of feature selection unde...

متن کامل

Margin-based feature selection for hyperspectral data

A margin based feature selection approach is explored for hyperspectral data. This approach is based on measuring the confidence of a classifier when making predictions on a test data. Greedy feature flip and iterative search algorithms, which attempts to maximise the margin based evaluation functions, were used in the present study. Evaluation functions use linear, zero-one and sigmoid utility...

متن کامل

Efficient semi-supervised feature selection with noise insensitive trace ratio criterion

Feature selection is an effective method to deal with high-dimensional data. While in many applications such as multimedia and web mining, the data are often high-dimensional and very large scale, but the labeled data are often very limited. On these kind of applications, it is important that the feature selection algorithm is efficient and can explore labeled data and unlabeled data simultaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2018.2888924